6,223 research outputs found

    Refined Asymptotics for the subcritical Keller-Segel system and Related Functional Inequalities

    Get PDF
    We analyze the rate of convergence towards self-similarity for the subcritical Keller-Segel system in the radially symmetric two-dimensional case and in the corresponding one-dimensional case for logarithmic interaction. We measure convergence in Wasserstein distance. The rate of convergence towards self-similarity does not degenerate as we approach the critical case. As a byproduct, we obtain a proof of the logarithmic Hardy-Littlewood-Sobolev inequality in the one dimensional and radially symmetric two dimensional case based on optimal transport arguments. In addition we prove that the one-dimensional equation is a contraction with respect to Fourier distance in the subcritical case

    Global Solutions for the One-Dimensional Vlasov-Maxwell System for Laser-Plasma Interaction

    Get PDF
    We analyse a reduced 1D Vlasov--Maxwell system introduced recently in the physical literature for studying laser-plasma interaction. This system can be seen as a standard Vlasov equation in which the field is split in two terms: an electrostatic field obtained from Poisson's equation and a vector potential term satisfying a nonlinear wave equation. Both nonlinearities in the Poisson and wave equations are due to the coupling with the Vlasov equation through the charge density. We show global existence of weak solutions in the non-relativistic case, and global existence of characteristic solutions in the quasi-relativistic case. Moreover, these solutions are uniquely characterised as fixed points of a certain operator. We also find a global energy functional for the system allowing us to obtain LpL^p-nonlinear stability of some particular equilibria in the periodic setting

    Explicit Equilibrium Solutions For the Aggregation Equation with Power-Law Potentials

    Get PDF
    Despite their wide presence in various models in the study of collective behaviors, explicit swarming patterns are difficult to obtain. In this paper, special stationary solutions of the aggregation equation with power-law kernels are constructed by inverting Fredholm integral operators or by employing certain integral identities. These solutions are expected to be the global energy stable equilibria and to characterize the generic behaviors of stationary solutions for more general interactions

    Discussing a teacher MKT and its role on teacher practice when exploring data analysis

    Get PDF
    This article considers teacher knowledge in managing mathematically critical situations and the role of what can be termed a mathematical summary in the analysis of a teaching episode, viewed from the perspective of Mathematical Knowledge for Teaching (MKT). The analysis is based on an episode of content review, from a perspective which aims to understand the teacher’s logic rather than merely identify gaps in their knowledge. We discuss the importance of approaching mathematically critical situations in order to contribute to eradicating mathematical innumeracy (statistics) and to promote a kind of practice which is “mathematically demanding” as well as “pedagogically exciting”

    Mean-field limit for the stochastic Vicsek model

    Get PDF
    We consider the continuous version of the Vicsek model with noise, proposed as a model for collective behavior of individuals with a fixed speed. We rigorously derive the kinetic mean-field partial differential equation satisfied when the number N of particles tends to infinity, quantifying the convergence of the law of one particle to the solution of the PDE. For this we adapt a classical coupling argument to the present case in which both the particle system and the PDE are defined on a surface rather than on the whole space. As part of the study we give existence and uniqueness results for both the particle system and the PDE

    Stochastic Mean-Field Limit: Non-Lipschitz Forces \& Swarming

    Full text link
    We consider general stochastic systems of interacting particles with noise which are relevant as models for the collective behavior of animals, and rigorously prove that in the mean-field limit the system is close to the solution of a kinetic PDE. Our aim is to include models widely studied in the literature such as the Cucker-Smale model, adding noise to the behavior of individuals. The difficulty, as compared to the classical case of globally Lipschitz potentials, is that in several models the interaction potential between particles is only locally Lipschitz, the local Lipschitz constant growing to infinity with the size of the region considered. With this in mind, we present an extension of the classical theory for globally Lipschitz interactions, which works for only locally Lipschitz ones
    • …
    corecore